Goal—To build a rocket that flies faster than the speed of sound and creates an audible sonic boom, built strong enough to withstand such high airspeeds.
To Fly Faster Than the Speed of Sound
Model rocketry is probably the only hobby that can travel faster than the speed of sound (mach 1). But you can’t just build any old model rocket and expect it to break the sound barrier. It has to be a sleek, lightweight, high-thrust rocket. I’ve had to tweak my design several times to get it just right, and I probably will tweak it now and then in the future. However, there are 4 essential design features:
1)High-thrust rocket engine
2)Minimum diameter (That means the rocket should be no bigger around than is necessary to fit the high-thrust rocket engine
4)Light as a feather. Almost. Not so light that it flies like a feather!
So what is the speed of sound? It’s hard to design a rocket to go faster than a certain speed when that speed is unknown! Typically the speed of sound is about 761 miles per hour at sea level. But as it turns out, the speed of sound varies by a few factors. Here is the equation:
V = [331.5 + 0.606(T)]m/sec
In this equation, V is the speed of sound, and T is the temperature of the air in Celsius.
It is actually a lot more complicated than that, but this equation is accurate enough for my simple needs.
To Create an Audible Sonic Boom
The science behind a sonic boom is rather fascinating:
This is when the rocket is going the same speed as the sound waves; so all those sound waves get bunched up at the nose of the rocket creating a shock wave.
Once the rocket exceeds the speed of sound, it outruns the shock wave, which we hear as a sonic boom.
Anything faster than mach 5 is termed “Hypersonic.”
…but that’s more of a “spacecraft” field of study.
It used to be common to hear a sonic boom from aircraft (until the government passed a law prohibiting mach near populous), but you rarly ever hear sonic booms from rockets. I've seen numerous rocket launches that have gone over mach 1, but have only heard one boom from a rocket. As it turns out, even though rockets routinely break the sound barrier, and even though they make sonic booms, the booms are hardly ever heard, and there are a few reasons for this:
So… to help the likelihood of hearing a boom, my current design crosses over to transonic speed at about 0.5 seconds after ignition at an altitude of 300 feet. My idea is that if I can get it to accelerate to to the speed of sound fast enough, it will be at a low enough altitude that the sonic boom will be deflected out toward the spectators, and not over their heads.
To Withstand High Airspeeds
Here is why this is a challenge: drag and lift forces increase as the square of the airspeed. This means that if the average speed of a smaller model rocket is about 250 feet per second, a rocket that flies at the speed of sound is going to have about 20 times more drag force! How do you get cardboard and balsa wood to hold together going that fast?
Most large model rockets employ a certain method to help secure the fins on the rocket, and that is through-the-wall fin attachment. As its name implies, a tab on the fins goes through a slit in the rocket body and attaches to the motor mount. It is the single best way to secure the fins so that they can withstand almost any flight condition.
However, my design has no space between the rocket body and motor mount for through-the-wall fin attachment—the rocket body is the motor mount. So it will be tricky getting a strong bond using only a simple butt-joint.
Here are 4 ways to help keep the fins attached and secure:
1) Double-wedge airfoil: A good airfoil on the fins of a supersonic vehicle is double wedge, or a “diamond” airfoil. This has sharp-pointed leading and trailing edges.
2) Paper skins: Even though balsa wood has a higher strength-to-weight ratio than carbon steel, it is only so strong. One of the biggest things you can do to increase the durability of balsa wood fins is to laminate them with paper skins.
3) Double-dry glue joint: To really make a good glue joint, you need to coat both surfaces with a thin coat of glue and let it dry before bonding them. Then apply a second coat and bond the two surfaces. The first coat penetrates the pores of the balsa wood, and the second coat bonds glue to glue. When it comes to porous materials this is the strongest glue joint out there.
4) Good fillet with epoxy: If you spread a bead of glue in the intersection of the fin and the rocket body the force will be distributed better. Not to mention this is better for aerodynamics.
Summing It Up
I will probably build 4 or 5 identical vehicles, because I don’t expect that I will ever find them again after launch. I have not yet started building them (waiting for funds to come in. Actually, I have to go earn them). But the materials to build it are simple: paper, cardboard, balsa wood, plastic, elastic, polyethylene LDPE, wood glue, epoxy, white glue, ammonium perchlorate, and a phenolic casing. I mean, who would have thought that such materials could be made into such a complex vehicle?
I see God in my field of study. I sometimes wonder how in the world some scientists could be atheists. How on earth could you not see God in His Creation? I mean, just look at this photo!